Some aspects on designing for metal Powder Bed Fusion

نویسندگان

  • Karolina Johansson
  • Sebastian Hällgren
چکیده

Additive Manufacturing (AM) using the Powder Bed Fusion (PBF) is a relatively new manufacturing method that is capable of creating shapes that was previously practically impossible to manufacture. Many think it will revolutionize how manufacturing will be done in the future. This thesis is about some aspects of when and how to Design for Additive Manufacturing (DfAM) when using the PBF method in metal materials. Designing complex shapes is neither easy nor always needed, so when to design for AM is a question with different answers depending on industry or product. The cost versus performance is an important metric in making that selection. How to design for AM can be divided into how to improve performance and how to improve additive manufacturability where how to improve performance once depends on product, company and customer needs. Using advanced part shaping techniques like using Lattices or Topology Optimization (TO) to lower part mass may increase customer value in addition to lowering part cost due to faster part builds and less powder and energy use. Improving PBF manufacturability is then warranted for parts that reach series production, where determining an optimal build direction is key as it affects many properties of PBF parts. Complex shapes which are designed for optimal performance are usually more sensitive to defects which might reduce the expected performance of the part. Non Destructive Evaluation (NDE) might be needed to certify a part for dimensional accuracy and internal defects prior use. The licentiate thesis covers some aspects of both when to DfAM and how to DfAM of products destined for series production. It uses design by Lattices and Topology Optimization to reduce mass and looks at the effect on part cost and mass. It also shows effects on geometry translation accuracies from design to AM caused by differences in geometric definitions. Finally it shows the effect on how different NDE methods are capable of detecting defects in additively manufactured parts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control

Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-bre...

متن کامل

Using Design of Experiments in Finite Element Modeling to Identify Critical Variables for Laser Powder Bed Fusion

Input of accurate material and simulation parameters is critical for accurate predictions in Laser Powder Bed Fusion (L-PBF) Finite Element Analysis (FEA). It is challenging and resource consuming to run experiments that measure and control all possible material properties and process parameters. In this research, we developed a 3-dimensional thermal L-PBF FEA model for a single track laser sca...

متن کامل

Practical Issues in the Application of Direct Metal Laser Sintering

Direct Metal Laser Sintering (DMLS) was introduced to meet the objective of producing metal parts directly from CAD data. CRDM has accumulated six years of experience in applying this technique, mostly to prototyping parts for evaluation. For some applications, such as blow moulds, porosity generated in DMLS has proved to be beneficial, but for others a concession on tolerances or finish are ne...

متن کامل

Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufacturing

Laser-powder bed fusion (L-PBF) additive manufacturing involves complex physics such as heat transfer and molten metal flow, which have a significant influence on the final build quality. In this study, transport phenomena based modeling is used to provide a quantitative understanding of complex molten pool transients. In particular, a three dimensional (3D), transient numerical model is develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017